
1

2

Table of Contents

Executive Summary 4

Project Context 4

Audit scope 7

Security Rating 8

Intended Smart Contract Functions 9

Code Quality 10

Audit Resources 10

Dependencies 10

Severity Definitions 11

Status Definitions 12

Audit Findings 13

Centralisation 18

Conclusion 19

Our Methodology 20

Disclaimers 22

About Hashlock 23

Hashlock Pty Ltd

3

CAUTION

THIS DOCUMENT IS A SECURITY AUDIT REPORT AND MAY CONTAIN

CONFIDENTIAL INFORMATION. THIS INCLUDES IDENTIFIED

VULNERABILITIES AND MALICIOUS CODE WHICH COULD BE USED TO

COMPROMISE THE PROJECT. THIS DOCUMENT SHOULD ONLY BE FOR

INTERNAL USE UNTIL ISSUES ARE RESOLVED. ONCE VULNERABILITIES ARE

REMEDIATED, THIS REPORT CAN BE MADE PUBLIC. THE CONTENT OF THIS

REPORT IS OWNED BY HASHLOCK PTY LTD FOR USE OF THE CLIENT.

Hashlock Pty Ltd

4

Executive Summary

The Finity team partnered with Hashlock to conduct a security audit of their smart

contracts. Hashlock manually and proactively reviewed the code in order to ensure the

project’s team and community that the deployed contracts are secure.

Project Context

Finity Network is a next-generation financial platform that seamlessly blends traditional

banking services with the decentralized world of cryptocurrencies. By integrating

Centralized Exchange (CEX), Web3 capabilities, and banking functionalities into a single,

intuitive interface, abcd offers a unified, user-friendly experience. Our mission is to

deliver a secure, fast, and reliable solution that caters to both individual users and

institutional clients.

Project Name: Finity

Project Type: Defi

Compiler Version: ^0.8.24

Website: www.finity.network

Logo:

Hashlock Pty Ltd

http://www.finity.network

5

Visualised Context:

Project Name Launch Date

Finity TBA

Compiler Version Language

v^0.8.24 Solidity

Network Token Ticker

EVM TBA

Hashlock Pty Ltd

6

Project Visuals:

Hashlock Pty Ltd

7

Audit scope

We at Hashlock audited the solidity code within the Finity project, the scope of work

included a comprehensive review of the smart contracts listed below. We tested the

smart contracts to check for their security and efficiency. These tests were undertaken

primarily through manual line-by-line analysis and were supported by software-assisted

testing.

Description Finity Network Smart Contracts

Platform EVM / Solidity

Audit Date December, 2024

Contract FinityPreSale.sol

Contract MD5 Hash 37ee13b0344b3a7b0ff25c9c79afcab

GitHub Commit Hash 3efeb4bb416bff84ddf9b383d5e39222f7d8d07e

Hashlock Pty Ltd

8

Security Rating

After Hashlock’s Audit, we found the smart contracts to be “Secure”. The contracts all
follow simple logic, with correct and detailed ordering. They use a series of interfaces,
and the protocol uses a list of Open Zeppelin contracts. We initially identified some
significant vulnerabilities that have since been addressed.

The ‘Hashlocked’ rating is reserved for projects that ensure ongoing security via bug bounty programs or
on chain monitoring technology.

All issues uncovered during automated and manual analysis were meticulously reviewed

and applicable vulnerabilities are presented in the Audit Findings section. The general

security overview is presented in the Standardised Checks section and the project's

contract functionality is presented in the Intended Smart Contract Functions section.

All vulnerabilities initially identified have now been resolved and acknowledged.

Hashlock found:

1 High severity vulnerabilities

1 Medium severity vulnerability

1 Gas Optimisation

2 QAs

Caution: Hashlock’s audits do not guarantee a project's success or ethics, and are not

liable or responsible for security. Always conduct independent research about any

project before interacting.

Hashlock Pty Ltd

9

Intended Smart Contract Functions

Claimed Behaviour Actual Behaviour

FinityPreSale.sol

Facilitates a token presale for the Finity network.

Participants can buy Finity tokens using ETH or

USDT during the presale period.

Contract achieves this

functionality.

Hashlock Pty Ltd

10

Code Quality

This audit scope involves the smart contracts of the Finity project, as outlined in the

Audit Scope section. All contracts, libraries, and interfaces mostly follow standard best

practices and to help avoid unnecessary complexity that increases the likelihood of

exploitation, however, some refactoring was required.

The code is very well commented on and closely follows best practice nat-spec styling.

All comments are correctly aligned with code functionality.

Audit Resources

We were given the Finity project smart contract code in the form of Github access.

As mentioned above, code parts are well commented. The logic is straightforward, and

therefore it is easy to quickly comprehend the programming flow as well as the complex

code logic. The comments are helpful in providing an understanding of the protocol's

overall architecture.

Dependencies

As per our observation, the libraries used in this smart contracts infrastructure are

based on well-known industry standard open source projects.

Hashlock Pty Ltd

11

Severity Definitions

The severity levels assigned to findings represent a comprehensive evaluation of both

their potential impact and the likelihood of occurrence within the system. These

categorizations are established based on Hashlock's professional standards and

expertise, incorporating both industry best practices and our discretion as security

auditors. This ensures a tailored assessment that reflects the specific context and risk

profile of each finding.

Significance Description

High

High-severity vulnerabilities can result in loss of funds,
asset loss, access denial, and other critical issues that
will result in the direct loss of funds and control by the
owners and community.

Medium
Medium-level difficulties should be solved before
deployment, but won't result in loss of funds.

Low
Low-level vulnerabilities are areas that lack best
practices that may cause small complications in the
future.

Gas Gas Optimisations, issues, and inefficiencies

QA
Quality Assurance (QA) findings are informational and
don't impact functionality. Supports clients improve the
clarity, maintainability, or overall structure of the code.

Hashlock Pty Ltd

12

Status Definitions

Each identified security finding is assigned a status that reflects its current stage of

remediation or acknowledgment. The status provides clarity on the handling of the

issue and ensures transparency in the auditing process. The statuses are as follows:

Significance Description

Resolved

The identified vulnerability has been fully mitigated
either through the implementation of the recommended
solution proposed by Hashlock or through an alternative
client-provided solution that demonstrably addresses the
issue

Acknowledged

The client has formally recognized the vulnerability but
has chosen not to address it due to the high cost or
complexity of remediation. This status is acceptable for
medium and low-severity findings after internal review
and agreement. However, all high-severity findings must
be resolved without exception.

Unresolved
The finding remains neither remediated nor formally
acknowledged by the client, leaving the vulnerability
unaddressed.

Hashlock Pty Ltd

13

Audit Findings

High

[H-01] FinityPreSale#buyTokens - Incorrect token amount calculation

Description

The buyTokens() function calculates the amount of $FINITY tokens to be transferred

based on the current eth price and eth amount deposited.

The function has a critical bug in the calculation of ethAmountInUSDT value by

multiplying price value instead of dividing it.

Vulnerability Details

The contract takes the ETH price from the Chainlink’s aggregator contract.

function getETHPriceInUSDT() public view returns (uint256) {

(, uint256 price, , uint256 updatedAt,) = priceFeed.latestRoundData();

uint256 priceETHInUSDT = 1e24 * uint256(price);

...

return uint256(priceETHInUSDT);

}

Basically, the return value of the latestRoundData() function has 18 decimals so the

getETHPriceInUSDT() function returns a value with 42 decimals.

In the buyTokens() function, ethAmountInUSDT is calculated by multiplying

getETHPriceInUSDT() value by msg.value and dividing by 1e24.

So ethAmountInUSDT value will have 36 decimals.

function buyTokens() public payable whenNotPaused nonReentrant {

...

uint256 price = getETHPriceInUSDT();

uint256 ethAmountInUSDT = price * msg.value / 1e24;

...

Hashlock Pty Ltd

14

uint256 finityTokQty = ethAmountInUSDT * tokenPrice;

...

}

After that, finityTokQty value is calculated by multiplying ethAmountInUSDT value by

tokenPrice and it will have 54 decimals even if the FINITY token’s decimal is 18.

Impact

Users who buy tokens with native coins will get a huge amount of $FINITY tokens.

Recommendation

Update the calculation of ethAmountInUSDT value.

uint256 ethAmountInUSDT = msg.value * 1e24 / price;

Status

Resolved

Hashlock Pty Ltd

15

Medium

[M-01] FinityPreSale#setTokenPrice - Wrong value is emitted

Description

The setTokenPrice function emits the TokenPriceUpdated event and the

TokenPriceUpdated event is intended to emit the old price and new price values.

However, the current event emits the same values by emitting the updated tokenPrice

value.

function setTokenPrice(uint256 _newTokenPrice) external onlyOwner {

...

tokenPrice = _newTokenPrice;

emit TokenPriceUpdated(tokenPrice, _newTokenPrice);

}

Recommendation

Cache the old token price before updating the tokenPrice value and emit the cached

value for the first parameter of the event.

Status

Resolved

Hashlock Pty Ltd

16

Gas

[G-01] FinityPreSale - Use immutable or constant

Description

In the FinityPreSale contract, the priceStaleThreshold variable is only updated in the

constructor.

Such variables could be made immutable to save gas.

Recommendation

Make the priceStaleThreshold variable constant.

Status

Resolved

QA

[Q-01] Contracts - Floating pragma

Description

The contracts have pragma solidity ^0.8.24 and it might allow the contracts to be

deployed with a different version than the one used for testing.

Different pragma versions being used in test and mainnet may pose unidentified

security issues.

Recommendation

Specify a specific version of Solidity in the pragma statement.

Status

Resolved

Hashlock Pty Ltd

17

[Q-02] FinityPreSale#getContractBal - Incorrect error message

Description

The getContractBal function in FinityPreSale contract is reverted when the

_tokenAddress value is address(0).

However, it’s reverted with an Invalid user address message even if it’s reverted due

to the invalid token address.

Recommendation

Update the error message correctly.

Status

Resolved

Hashlock Pty Ltd

18

Centralisation

The Finity project values security and utility over decentralisation.

The owner executable functions within the protocol increase security and functionality

but depend highly on internal team responsibility.

Hashlock Pty Ltd

19

Conclusion

After Hashlock’s analysis, the Finity project seems to have a sound and well-tested

code base, now that our vulnerability findings have been resolved and acknowledged.

Overall, most of the code is correctly ordered and follows industry best practices. The

code is well commented on as well. To the best of our ability, Hashlock is not able to

identify any further vulnerabilities.

Hashlock Pty Ltd

20

Our Methodology

Hashlock strives to maintain a transparent working process and to make our audits a

collaborative effort. The objective of our security audits is to improve the quality of

systems and upcoming projects we review and to aim for sufficient remediation to help

protect users and project leaders. Below is the methodology we use in our security

audit process.

Manual Code Review:

In manually analysing all of the code, we seek to find any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and random

number generators. We also watch for areas where more defensive programming could

reduce the risk of future mistakes and speed up future audits. Although our primary

focus is on the in-scope code, we examine dependency code and behaviour when it is

relevant to a particular line of investigation.

Vulnerability Analysis:

Our methodologies include manual code analysis, user interface interaction, and white

box penetration testing. We consider the project's website, specifications, and

whitepaper (if available) to attain a high-level understanding of what functionality the

smart contract under review contains. We then communicate with the developers and

founders to gain insight into their vision for the project. We install and deploy the

relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Hashlock Pty Ltd

21

Documenting Results:

We undergo a robust, transparent process for analysing potential security vulnerabilities

and seeing them through to successful remediation. When a potential issue is

discovered, we immediately create an issue entry for it in this document, even though

we have not yet verified the feasibility and impact of the issue. This process is vast

because we document our suspicions early even if they are later shown to not represent

exploitable vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, and then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most tentative,

and we strive to provide test code, log captures, or screenshots demonstrating our

confirmation. After this, we analyse the feasibility of an attack in a live system.

Suggested Solutions:

We search for immediate mitigations that live deployments can take and finally, we

suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinised by the developers

and deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the contract details are

made public.

Hashlock Pty Ltd

22

Disclaimers

Hashlock’s Disclaimer

Hashlock’s team has analysed these smart contracts in accordance with the best

industry practices at the date of this report, in relation to: cybersecurity vulnerabilities

and issues in the smart contract source code, the details of which are disclosed in this

report, (Source Code); the Source Code compilation, deployment, and functionality

(performing the intended functions).

Due to the fact that the total number of test cases is unlimited, the audit makes no

statements or warranties on the security of the code. It also cannot be considered as a

sufficient assessment regarding the utility and safety of the code, bug-free status, or

any other statements of the contract. While we have done our best in conducting the

analysis and producing this report, it is important to note that you should not rely on

this report only. We also suggest conducting a bug bounty program to confirm the high

level of security of this smart contract.

Hashlock is not responsible for the safety of any funds and is not in any way liable for

the security of the project.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have their

own vulnerabilities that can lead to attacks. Thus, the audit can’t guarantee the explicit

security of the audited smart contracts.

Hashlock Pty Ltd

23

About Hashlock

Hashlock is an Australian-based company aiming to help facilitate the successful

widespread adoption of distributed ledger technology. Our key services all have a focus

on security, as well as projects that focus on streamlined adoption in the business

sector.

Hashlock is excited to continue to grow its partnerships with developers and other

web3-oriented companies to collaborate on secure innovation, helping businesses and

decentralised entities alike.

Website: hashlock.com.au

Contact: info@hashlock.com.au

Hashlock Pty Ltd

http://hashlock.com.au
mailto:info@hashlock.com.au

24

Hashlock Pty Ltd

